"Kevin will be giving my report on outsourcing."

Mira Belenkiy, Melissa Chase, Chris Erway, John Jannotti, Alptekin Küpçü, Anna Lysyanskaya
Incentivizing Outsourced Computation

Mira Belenkiy, Melissa Chase, Chris Erway, John Jannotti, Alptekin Küpçü, Anna Lysyanskaya
Scenario
Scenario

Marge
(Boss): trusted

Vacuum clean the house
(Job): algorithm + input

Simpsons
(Contractors): untrusted

honest

lazy

rational

malicious

Aug 16, 2008
Incentivizing Outsourced Computation

Scenario

Marge (Boss): trusted

Vacuum clean the house (Job): algorithm + input

Goal: Make sure the house is cleaned thoroughly

Simpsons (Contractors): untrusted

honest

lazy

rational

malicious

Aug 16, 2008
Model

Contractors won't be employed unless they can pay the fine

Contractors would like to earn the reward!
Why do the job at all?

Cost of vacuuming the house: $\text{cost}(1)$

Utility of an honest contractor:

$$\text{util}(1) = \text{reward} - \text{cost}(1) > 0$$

Participation constraint.
Why perform the job correctly?

- Lazy contractors (Homer) can use \textit{broom} instead of \textit{vacuum}
- Broom does the job correctly with probability $q < 1$
 - But has lower cost
 - $0 \leq \text{cost}(q) < \text{cost}(1)$
Guaranteed Accuracy

Ideally, everyone should use vacuum instead of broom

Solution: Require hash of intermediate steps (will be different for broom and vacuum) (e.g., plug into electricity)
Employ Multiple Contractors

- Marge needs to make sure the house is really clean, and ready for Christmas
- Give the same job to multiple people
- Marge double-checks the result only when the contractors return different results.
Problem: Two Equilibria

All lazy
\[\text{util}(q) = \text{reward} - \text{cost}(q) \]

All honest
\[\text{util}(1) = \text{reward} - \text{cost}(1) \]

Clearly \[\text{util}(q) > \text{util}(1) \]
Method 1: Using Honest Contractors to Incentivize Rational Contractors

• If some fraction of contractors are honest
• Set fine/reward using
 • $\Pr[\text{honest contractor exists in group}]$
• Then all rational contractors will behave honestly
Method 1: Using Honest Contractors to Incentivize Rational Contractors

• If some fraction of contractors are honest
• Set fine/reward using
 - Pr[honest contractor exists in group]
• Then all rational contractors will behave honestly
Method 2: Using Bounties to Incentivize Rational Contractors

- Offer extra reward (bounty) to whoever catches a cheater
- If cheating gives advantage adv then set $\text{bounty} \geq \text{reward} \cdot \text{adv}$
- Then all rational contractors will act honestly

utility when you catch a cheater
$\text{util}(1) = \text{reward} - \text{cost}(1) + \text{bounty}$
Method 2: Using Bounties to Incentivize Rational Contractors

- Offer extra reward (bounty) to whoever catches a cheater
- If cheating gives advantage adv then set bounty ≥ reward · adv
- Then all rational contractors will act honestly

utility when you catch a cheater
util(1) = reward – cost(1) + bounty
Malicious Contractors

• Malicious contractors are irrational
 • Bart will break the vases while cleaning

• Bart wants to
 • reduce accuracy of the job
 • waste Marge's time
Malicious Contractors

• Malicious contractors are **irrational**
 • Bart will break the vases while cleaning
• Bart wants to
 • reduce accuracy of the job
 • waste Marge's time
• **Needs to keep non-negative balance**
 • needs to stay in the system
 • will not be employed if cannot pay the fine
Limited Damage by Malicious Contractors

- We show the accuracy loss and wasted work caused by malicious contractors are very limited.
- Bart needs to clean the house many times so that he can pay the fine when he breaks the vase.
Conclusion

• Ways for Marge to employ untrusted family members to thoroughly clean the house using a vacuum
• Limit damage caused by malicious Bart, and force him to clean the house most of the time.
• Best of all, at Brown University, our Brownie group rewards its members who clean after the meetings with
Incentivizing Outsourced Computation

Full presentation this Friday @ Seattle
NetEcon 08
cs.brown.edu/research/brownie

THANKS!

cs.brown.edu/research/brownie