An Optimally Fair Coin Toss

Tal MoranMoni NaorGil Segev

Weizmann Institute of Science

Coin Flipping

- Mutually distrustful parties want to flip a fair (binary) coin
- One party may be malicious
 - Can arbitrarily deviate from the protocol
 - In particular -- can abort prematurely
- Output of the honest party should not be significantly biased

Coin Flipping

When the parties are computationally unbounded, one of them can control the binary coin

Without simultaneity

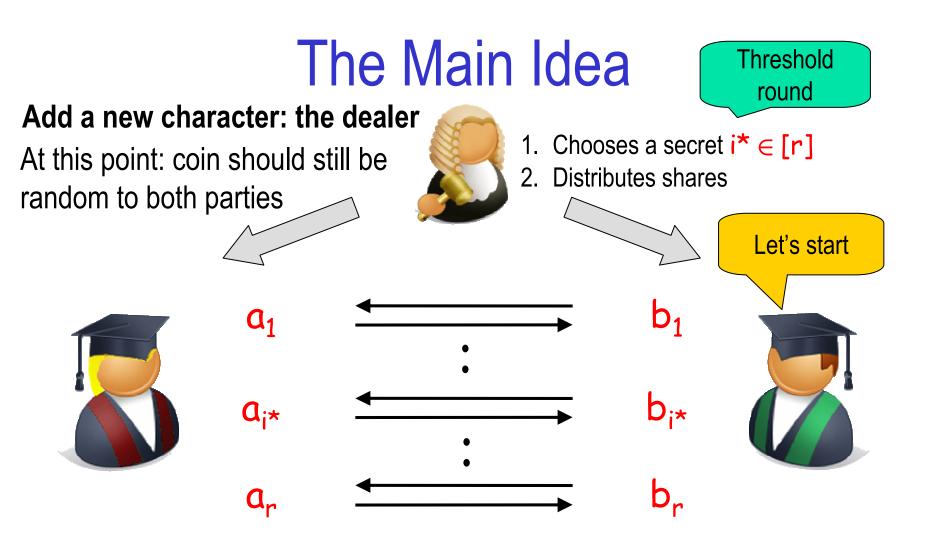
Lots of work: with more than two parties and honest majority

Coin flipping implies one-way functions

[Impagliazzo-Luby '89]

Blum '81: Coin flipping using bit commitment

This Work


- Cleve '86:
 Any r-round protocol is Ω(1/r) biased
- Best previously known protocol: bias O(1/√r)
 - Cleve-Impagliazzo '93: An $\Omega(1/\sqrt{r})$ lower bound in a tightly related model

Our result: Cleve's bound is tight!

Construct an optimally fair protocol - bias O(1/r)

- Based on standard cryptographic assumptions (Oblivious Transfer)
- Builds upon recent progress in fair secure computation [Gordon-Hazay-Katz-Lindell '08]

Exact constants: between 1/4 and 1/8

- Until round i^{*} the bits a_i and b_i are random & independent
- $a_{i^*} = b_{i^*}$ is the output $(a_{i^{*+1}} = b_{i^{*+1}} = "Halt")$
- If Alice halts at round $i \leq i^{+1}$, Bob outputs b_{i-1}

Open Problems

Minimal assumptions for achieving the optimal O(1/r) bias

- Blum's protocol relies on **any** one-way function
- Our protocol relies on Oblivious Transfer

Efficient implementations

- Pre-processing phase: relies on **general secure computation**
- The dealer's functionality is rather simple
- Is there a **specific** and more efficient implementation?

Optimal bias in the multiparty setting

- Several straightforward extensions of our protocol fail
 - The adversary may increase the probability of guessing the crucial round
 - Can get bias O(k/√r)
- Fair protocols for other functionalities GK2008

They are black-box separable

Advertisements

- Games For Extracting Randomness
- http://math166-pc.weizmann.ac.il/
- http://www.wisdom.weizmann.ac.il/~neko/
 - Play a game to help science
- Weizmann Winter School on Foundations of Computer Science: February 15-19th 2009
 - Tentative!

תודה רבה Thank you